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Abstract 

Computational phenomena (i.e., spurious supersaturation and negative mixing ratio of 

cloud water) usually exist in cloud-resolving models when the time step for explicit 

integration is larger than a microphysical timescale in clouds. In this paper, the 

microphysical timescales in clouds are studied, showing that the timescale of water vapor 

condensation (or cloud water evaporation) is smaller than 10 s - the order of a typical 

time step for cloud-resolving models. To avoid spurious computational phenomena in 

cloud-resolving modeling, it is suggested that moist entropy be used as a prognostic 

thermodynamic variable, and temperature be diagnosed from that and other prognostic 

variables. A simple numerical model with moist entropy as a prognostic variable, for 

example, is presented to show that spurious computational phenomena are removed when 

moist entropy is used as a prognostic variable. 
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1. Introduction 

With the continuous increase in computational power, cloud-resolving models will be 

used in the near future to simulate explicitly clouds and large-scale circulations for their 

interaction. For the correct simulation of that interaction, the models should well 

represent not only the processes in relation to the life cycle of individual clouds systems 

but also the processes in relation to large-scale circulations. 

In the Tropics, deep cumulus clouds act as an engine for the atmosphere, driving 

large-scale vertical circulations through convective heating (Riehl and Malkus 1958). 

However, many questions on convective heating need to be addressed through 

observations and modeling (e.g., Simpson et al. 1988, Tao and Adler 2003a). One of the 

questions is on the “efficiency” of the engine. Since clouds consist of small particles, the 

“efficiency” is related to the microphysics in clouds. Hence the microphysics should be 

represented properly in a cloud-resolving model in order to accurately simulate the 

interaction between clouds and large-scale circulations. 

On the other hand, small particles in clouds absorb and emit radiation, which can 

change the atmospheric energy budget and in turn large-scale circulations. As a result, 

they are coupled with large-scale circulations (e.g., Raymond 2000, Raymond and Zeng 

2000). Since large-scale vertical circulations are sensitive to the atmospheric radiative 

cooling rate (e.g., Zeng et al. 2004) and the radiative cooling rate is modulated by clouds 

through cIoud microphysics (e.g., Albrecht and Cox 1975; Baker 1997), cloud 

microphysics must be represented properly in a cloud-resolving model for the accurate 
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simulation of radiation and its role in the interaction between clouds and large-scale 

circulations. 

In current cloud-resolving models, there are computational phenomena such as 

spurious supersaturation near cloud edges (e.g., Grabowski 1989), and special adjustment 

techniques are usually introduced to reduce their negative effects, benefiting the 

numerical simulation of individual cloud systems (e.g., Tao et al. 1989). Some 

computational phenomena originate in the choice of prognostic thermodynamic variables 

(Grabowski 1989; Ooyama 1990; Zeng 2001; Zeng, Tao and Simpson 2004). In a new 

trend to avoid them, moist entropy is used as a prognostic variable in modeling, and 

temperature is diagnosed from that and other prognostic variables (Raymond and Blyth 

1986; Ooyama 1990, 2001; Zeng 2001, Zeng, Tao and Simpson 2004). Raymond and 

Blyth (1986) used moist entropy and the total mixing ratio of airborne water (water vapor 

and cloud water) as prognostic variables in a parcel model. Ooyama (1990) analyzed the 

thermal relations of moist entropy and suggested moist entropy be used as a prognostic 

variable in multi-dimensional numerical models. Ooyama (2001) and Zeng (200 1) 

constructed two- and three-dimensional models with moist entropy as a prognostic 

variable, respectively, to simulate warm clouds. In their models, neither spurious 

supersaturation nor negative mixing ratio of cloud water appears. Thus it is logical to 

extend moist entropy as a prognostic variable to simulate cold clouds. Zeng, Tao and 

Simpson (2004) derived a precise equation for moist entropy, providing a theoretical 

basis for moist entropy to be used as a prognostic variable in the modeling of cold clouds. 

In this paper, another aspect of moist entropy is addressed: the benefit of using moist 

entropy as a prognostic variable. 
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Spurious computational phenomena, as shown in section 2, exist in a numerical model 

when the time step for explicit integration is larger than a physical timescale. The 

phenomena manifest themselves in cloud-resolving modeling as spurious supersaturation 

and negative mixing ratio of cloud water. Since the proper simulation of the mixing ratio 

of cloud water is vital in long-term cloud-resolving modeling (e.g., Robe and Emanuel 

1996), the origin of computational phenomena should be explored so that they can be 

removed. Thus, the microphysical timescales in clouds should be studied first in contrast 

to the time step for cloud-resolving modeling. 

The microphysical timescale of water vapor condensation (or cloud water 

evaporation), as shown in section 3, is smaller than 10 s - the order of a typical time 

step for cloud-resolving models. Thus, the small timescale can bring about computational 

phenomena in cloud-resolving modeling. To avoid spurious phenomena, it is suggested in 

section 4 that moist entropy be used as a prognostic variable in the place of temperature. 

That strategy is different from other technologies on cloud condensation modeling (e.g., 

Grabowslu 1989; Tao et al. 1989; Grabowski and Smolarkiewicz 1990; Margolin, 

Reisner and Smolarkiewicz 1997). 

This paper is composed of five sections. In section 2, a spurious computational 

phenomenon is illustrated with the aid of a simple numerical model. In section 3, the 

expressions for microphysical timescales in clouds are derived, and the timescales are 

compared with the time steps used in cloud-resolving modeling. In section 4, the choice 

of prognostic thermodynamic variables in cloud-resolving modeling is discussed. and a 

numerical model with moist entropy as a prognostic variable is presented, as an example, 

to show that computational phenomena are removed when moist entropy is used as a 

4 



prognostic variable. In section 5,  a summary is given. Except for special illustrations, the 

paper follows the symbol definitions in Appendix A. 

2. Spurious computational phenomena 

In this section, an example of spurious computational phenomena is illustrated with a 

simple numerical model whose corresponding differential equation is 

d$/dt = - @IT, (2.1) 

where the variable 4 is a function of time t and the constant Tis a timescale. The variable 

qk1 when t=O. Equation (2.1) is solved analytically with 4 = exp(-t/z). 

For explicit integration, Equation (2.1) is discretized as 

@"" = 4'' - @"At/z (2.2) 

where superscripts indicate time level and At is the time step for integration. Equation 

(2.2) is solved with 4'' = (1 - At/z)" . Obviously the numerical solution of Equation (2.2) 

is close to the analytical solution of Equation (2.1) when 

A t < z .  (2.3) 

Otherwise, the value of 4 blows up or oscillates spuriously around zero. 

The computational phenomenon when At > z is shown in Figure 1, where At=10 s 

and the timescale z i s  2, 5 and 12.5 s, respectively. The numerical solutions of Equation 

(2.2) and their corresponding analytical solutions are shown with thick and thin lines, 

respectively, in the same pane for comparison. The values for 4 blows up when 2=2 s 

(or Ar > 22 ). When At = 22 = 10 s, qj oscillates between -1 and 1 spuriously. When 

~ 1 2 . 5  s (or At < z ), the numerical solution is close to the analytical solution. 
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Many microphysical processes in clouds are governed by Equation (2.1) or similar 

equations with different timescales (see section 3 for details). When a microphysical 

timescale is so small that the condition (2.3) is violated, spurious behavior appears. In the 

next section, microphysical timescales in clouds are studied so as to provide theoretical 

evidences for the construction of cloud-resolving models. 

3. Microphysical timescales in clouds 

a. Condensation growth 

An air parcel with uniform cloud droplets is studied for the timescale of water vapor 

condensation. Only water vapor condensation on cloud droplets or the evaporation of 

cloud droplets exists in the parcel. The concentration and the radius of droplets in the 

parcel are denoted with Nc and r,, respectively, and the mixing ratio of cloud water with 

qc. Thus 

(3.1) 

The growth rate of a droplet due to water vapor condensation is expressed as (e.g., 

Pruppacher and Klett 1997) 

where qy is the mixing ratio of water vapor, qvSw the saturation mixing ratio of water 

vapor over water and 

A,,, = (p,L: I K,RvT2 + p,,RvT I Es,&,Dv)-'. (3.3) 

Differentiating Equation (3.1) with respect to time, and then substituting Equation (3.2) 

into the resulting equation yields 
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Assume that the parcel is adiabatic and stationary. Thus, the energy equation is written 

approximately as 

dT 4” c, - = -Lv - . 
dt dt 

Substituting Equation (3.4) into (3.5) yields 

with the aid of the Clausius-Clapeyron equation 

(3.5) 

(3.6) 

(3.7) 

The analogy between Equations (3.6) and (2.1) shows the timescale of water vapor 

condensation 

(3.8) 

which is consistent with that of Squires (1952) and Korolev and Mazin (2003). 

Equation (3.8) shows that the timescale is a function of temperature and pressure. An 

ideal case is discussed here to show the variation of the timescale with height. Assume 

that cloudy air has the same temperature and pressure as its ambient air. The ambient air 

is stationary. Its surface pressure is 1013.25 hpa, and temperature decreases linearly with 

height from 288 at z=O to 216.5 K at z=l l  km. For this case, the timescale of water vapor 

condensation against height is computed with Equation (3.8), and the results for N,rc=500 

and 3000 ~ m . c m - ~  are displayed in Figure 2 with thin and thick lines, respectively. If 

rc=10 pm, N,r,=500 and 3000 pmcrn” are representative of marine and continental air, 
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respectively (e.g., Pruppacher and Klett 1997). Both timescales for Ncr,.=500 and 3000 

y m . ~ m - ~ ,  as shown in the figure, are smaller than 10 s, implying that water vapor 

condensation on to cloud droplets (or the evaporation of cloud droplets) is not suitable for 

explicit simulation in cloud-resolving modeling. 

b. Other difision growth 

Similar to the derivation for Equation (3.8), the timescale of water vapor deposition on 

small ice particles is obtained as 

Z=(1+ qvsiLt )-I W v s i  

R,C,T' 4n;oiAiNir;. ' (3.9) 

where qvsi is the saturation mixing ratio of water vapor over ice, r, the radius of small ice 

particles, N ,  the concentration of the ice particles and 

4 = ( P ~ L ; I K , R , T ~  + ~ , R , T I E , , D , ) - ~ .  (3.10) 

Following the procedure in Figure 2, the timescale for vapor deposition is computed 

with Equation (3.9), and the results for Nlrl=lO-', lo-' and 10' pm-cm-' are displayed in 

Figure 3. If r,=10 pm, NJ- ,=~O'~ ,  10'' and 10' ym-cm" represent the air with low, 

moderate and high concentrations of ice particles, respectively (e.g., Pruppacher and 

Klett 1997). As shown in the figure, the timescale decreases with the increase of N ,  for a 

given r,. However, even when the concentration of ice particles is high (or N,=lOOO liter- 

), the timescale is still larger than 10 s, implying that water vapor deposition to small ice 1 

particles is suitable for explicit simulation in cloud-resolving modeling. 

The timescale of rainwater evaporation can be obtained in steps analogous to Equation 

(3.8). Introducing the ventilation coefficients fv for water vapor diffusion and fh for heat 
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transport in Equation (3.2) for raindrop evaporation and assuming &=fh (e.g., Pruppacher 

and Klett 1997), the time scale of rainwater evaporation is obtained 

z=(1+  4,J: )-1 W " S W  

RVC,T2 4n;o,4rf,N,r, ' 

where N, and r,. are the concentration and the radius of 

(3.11) 

rain drops, respectively. Let 

r,=103 pm, N ~ l o ~  m-3, fv=lO, T=280 K and p=850 hpa. The timescale of rainwater 

evaporation is 323 s. Since the timescale is much larger than 10 s, the order of time step 

in cloud-resolving modeling, rainwater evaporation is suitable for explicit simulation in 

cloud-resolving modeling. 

Similarly, the time scale of water vapor deposition on precipitating ice particles is 

obtained after introducing the ventilation coefficients fv for water vapor diffusion and fh 

for heat transport in Equation (3.9). That is 

Z=(1+ 4 v s i C  )-I W v s i  

Rv C,T 47% 4. f v  N, rp 

where Np and rp are the concentration and the radius 

respectively. Let r,=103 pm, Np=103 m-3, T=260 K and 

(3.12) 

of precipitating ice particles, 

p=550 hpa. The timescale of 

water vapor deposition on snowflakes is 1184 s when fv=2, and the timescale of 

deposition on graupel is 236 s whenfv=lO. Since both timescales are much larger than 10 

s, water vapor deposition on to snowflakes and graupel is suitable for explicit simulation 

in cloud-resolving modeling. 

c. Ice fusion 

An air parcel with uniform spherical ice particles is studied for the timescale of cloud 

ice fusion. For simplicity, it is assumed that no liquid water surrounds ice particles. Let Ni 

9 



I .  I 

and ri denote the concentration and the radius of ice particles, respectively. The melting 

of an ice particle is described with (e.g., Pruppacher and Klett 1997). 

dr; - 4 q  f,,K,(T -T0)+4q  fvLv(- -  e E . m )  -4n;oiLfr; -- 
dt R,T R,,TO 

, (3.13) 

where T0=273.15 K and e is the partial pressure of water vapor in the air. In the preceding 

equation, the term on the left side represents the latent cooling due to ice fusion, and the 

two terms on the right side represent the sensible and latent heat fluxes from air to the ice 

particle, respectively. Obviously the latent heat of water vapor condensation at the 

surface is balanced by part of the latent heat of ice melting, and the latent heats do not 

change air temperature directly. 

Assume that the parcel is adiabatic and stationary. For ice fusion, heat is transfered 

from air to ice particles. Thus air temperature is decreased, which is described as 

dT N .  
C,-=-4n~, f K ' ( T - T o ) .  

dt " P  
(3.14) 

The contrast between Equations (3.14) and (2.1) shows the timescale of ice fusion 

z =  KP (3.15) 
4@hK0NIr, 

Using the above expression, the timescales of ice fusion and snowflake fusion are 

estimated with &=I and 2, respectively. Their results are displayed in Figure 4 with thin 

and thick lines, respectively. 

Equation (3.15) and Figure 4 are also suitable for the freezing of water that is 

collected by ice particles. As shown in Figure 4, the timescales in relation to fusion and 

freezing are larger than 10 s. Therefore, the fusion and freezing processes are suitable for 

explicit simulation in cloud-resolving modeling. 
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4. Moist entropy as a prognostic variable 

The microphysical timescales analyzed in the preceding section show that only the 

timescale of water vapor condensation is smaller than the typical time step used in cloud- 

resolving modeling. Since this short timescale may bring about computational 

phenomena in cloud-resolving modeling, the choice of prognostic thermodynamic 

variables is discussed in this section for the removal of the computational phenomena. 

a. Prognostic thennodynamic variables 

To remove the computational phenomenon in Equation (2.2) when At > z , it is 

assumed that qk0 in one step. As shown in Figure 1, qk0 approximates the analytical 

solution well when At>z In other words, the prognostic variable @ degenerates into a 

diagnostic variable. Next, prognostic thermodynamic variables are discussed for cloud- 

resolving modeling. 

In current cloud-resolving models, three prognostic thermodynamic variables are used 

to simulate non-precipitating warm clouds and those three variables plus others to 

simulate other clouds (e.g., Grabowslu 1989, Tao and Simpson 1993, Tompkins and 

Craig 1998, Tao et al. 2003b). The three prognostic variables are T temperature (or its 

equivalent), qy the mixing ratio of water vapor and qc the mixing ratio of cloud water. 

However the three prognostic variables, as shown in Equations (3.4) and ( 3 3 ,  involve 

one timescale that is smaller than 10 s the order of time steps used in cloud-resolving 

modeling. Since only one short timescale is involved, it is impossible for all three 

prognostic variables to degenerate into diagnostic variables at the same time. Thus, it is 
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suggested that other prognostic variables (e.g., moist entropy) be used for cloud-resolving 

modeling. 

Moist entropy per unit mass of dry air is expressed as (Zeng, Tao and Simpson 2004) 

(4.11 T -e  +-q, L V  - ~ , q ,  In f --qi, Lf 
T 

s=(C, +c,q,)ln--R,ln- 
'ref P ref T 

where relative humidity @e/Es,,,; Tref = 273.15 K and pref = lo5 pa are the reference 

temperature and pressure, respectively; and the total mixing ratio of airborne water (water 

vapor, cloud water and ice) 

4, =4,+4,+4,* (4.2) 

For the simulation of non-precipitating warm clouds, the three prognostic variables T,  

q,, and qc can be replaced equivalently with three other prognostic variables s, qr and the 

supersaturation (qv/qvsw -1). Of all the other three variables, as shown in Equation (3.6), 

only the supersaturation involves the short timescale of water vapor condensation. Since 

cloud condensation (or evaporation) can not change s or qr, it is reasonable to assume that 

the supersaturation is zero when cloud water exists' . Consequently, three prognostic 

variables are decreased to two prognostic variables (i.e., s and qr). 

Zero supersaturation implies that air is saturated with respect to water and real 

supersaturation is removed. In fact, it is impossible for real supersaturation to be 

simulated in cloud-resolving models even though a small time step is used, because no 

spectra of cloud particles are represented explicitly. 

In spectral-bin models (e.g., Tao et al. 2003b), the spectra of cloud particles are represented 

explicitly. Thus, the approximation of zero supersaturation can be removed and real 

supersaturation can be simulated properly with a small time step. 

1 
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Fortunately, the approximation of zero supersaturation is supported by observations. 

Since real supersaturation in clouds can not be measured directly, it is usually calculated 

with observational data of temperature, vertical velocity and cloud droplets. It is found 

that real supersaturation in cumulus clouds is in the range from -4.5 to 0.5% and rarely 

exceeds 1% (Politovich and Cooper 1988). 

The approximation of zero supersaturation is understandable in the atmosphere. When 

no ice is involved, air containing cloud water is very close to saturation over water 

because the concentration of cloud condensation nuclei is very high (e.g., Howell 1949; 

Politovich and Cooper 1988). When ice particles exist, air with cloud water is still close 

to saturation over water because of the great difference of the concentrations of cloud 

drops and ice particles (Korolev and M a i n  2003, Zeng, Tao and Simpson 2004). The 

concentration of cloud drops is about four orders larger than the concentration of ice 

particles (e.g., Wallace and Hobbs 1977, Pruppacher and Klett 1997). Thus the timescale 

of cloud water evaporation is much smaller than the timescale of water vapor deposition 

on ice particles (see Figures 2 and 3 for comparison). As a result, the air with cloud water 

is almost saturated with respect to water, which provides an environment for the 

Bergeron process in cold clouds (Bergeron 1935). Summarily, it is physically clear that 

(s, qt) can replace (T,  qv, qc) as prognostic variables in cloud-resolving modeling. 

b. Diagnosing temperatui-e fi-om moist entropy 

This subsection describes how to diagnose temperature from moist entropy and other 

prognostic variables. The procedure is summarized in the flow chart in Figure 5. When p 
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the pressure and ql the mixing ratio of cloud ice are known, (T, q,,, qr) the air temperature 

and the mixing ratios of water vapor and cloud water can be diagnosed from (s, qt) the 

moist entropy and the total mixing ratio of airborne water. 

Consider an imaginary parcel with s the moist entropy2, p the pressure and qi the 

mixing ratio of cloud ice. The imaginary parcel stays right at water-saturation and 

contains no cloud water. Its temperature is denoted as Tw* and its saturation mixing ratio 

of water vapor as 

Using the preceding equation, Equation (4.1) is solved for Tw* with the Newton iterative 

method first. Then, qysw* is determined by Equation (4.3). 

Since moist entropy and the total mixing ratio of airborne water are conserved when 

water vapor condensates or cloud drops evaporate, qvsw* for the imaginary parcel is 

compared with qt-qi for the original parcel, showing whether the original parcel is 

saturated with respect to water. When qfqiqvsw*,  the air is unsaturated with respect to 

water. Thus q,=O, qu=qt-qi, and Equation (4.1) is solved for the air temperature T with the 

~~ ~ ~~ 

When cloud ice is involved, moist entropy changes slightly with temperature in adiabatic 

motion. Thus, the .moist entropy of the imaginary parcel is adjusted to 

s + q, [L, ( T ) / T  - L, (Ti) /T,:]  so that the imaginary parcel can change adiabatically to the state 

where moist entropy is the same as that of the original parcel [see Equation (3.5) of Zeng et al. 

(2004) for details]. In other words, s+q,L,(T)/T is conserved in cloud condensation (or 

evaporation). 
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Newton iterative method. When qr-q12qYsw*, the air is saturated with respect to water. As 

a result, qV=qVSW*, T=TW* and qc=qt-qv-ql. 

c. Comparison of two numerical models 

In this subsection, two numerical models are used to simulate an air parcel in adiabatic 

upward motion. They use (T,  qv, qc) and (s, qt) as prognostic variables, respectively. Their 

results are compared to show the benefit of using moist entropy as a prognostic variable. 

In the first model, (T, q,, qc) are used as prognostic variables. Their governing 

equations are 

and 

-- dqc dqv 
dt dt 

dT dln(p-e) d lne - -Lv- 4" 
dt - q v R v T 7  - dt 

(CP + c,,qv + c14,)- - RdT dt 

- _  dp --pgw 
dt 

2 dq, = -(I+ qv,,Lv )-1 4, - 4 v s w  

dt RvC,T2 z (4.7) 

when q,>qVsW. When qv<qYsMi, Equation (4.7) still works if q,>O. Otherwise, dq,ldt=O. 

Of the preceding governing equations, Equation (4.6) is obtained from the hydrostatic 

equation, and Equation (4.7) is obtained from Equations (3.4) and (3.8). As shown in 

Equation (3.8), the timescale z changes with time. Its variation can be simulated 

explicitly in spectral-bin models that explicitly represent the spectrum of cloud drops 

(e.g., Tao et aE. 2003b). For simplicity, a constant timescale zrl s is used in Equation 

(4.7) so as to bring the computational phenomena into focus. 
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In the second model, (s, qr) are uscd as prognostic variables. Their governing 

equations are dsldt=dqJdt=O and Equation (4.6). Both models are equivalent. They 

involve neither precipitation nor ice. They follow the numerical scheme in Equation 

(2.2). 

The air parcel is assumed to move upward with a vertical velocity of w=4 m / s  as well 

as an initial pressure 1000 hpa, relative humidity of 85%'and temperature of 300 K. The 

numerical results from the two models are displayed in Figure 6. The results from the 

first model with At=0.1 s are displayed with thin solid lines. These results can be 

regarded as a benchmark to check the results in other cases. 

The results from the first model using At=3 s are displayed with thin dashed lines in 

Figure 6. As shown in the figure, the results are bad compared to those with A ~ 0 . 1  s, and 

both spurious supersaturation and negative mixing ratio of cloud water are present. When 

the model uses At=lO s, it blows up due to computational instability. The results from the 

second model with At=lO s are displayed with thick dashed lines in Figure 6. As shown 

in the figure, the results agree well with those of the first model with At=O.l s, and 

neither spurious supersaturation nor negative mixing ratio of cloud water appears. These 

numerical tests clearly show that moist entropy and the total mixing ratio of airborne 

water are more efficient than temperature and the mixing ratios of water vapor and cloud 

water as prognostic variables in cloud-resolving modeling. 

5. Summary 

Spurious computational phenomena occur in cloud-resolving models when the time 

step for explicit integration is larger than a microphysical timescale. The phenomena are 
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evident as spurious supersaturation and negative mixing ratio of cloud water (e.g., 

Grabowslu 1989, Tao et al. 1989). The related computational error can affect long-term 

cloud-resolving modeling significantly (e.g., Robe and Emanuel 1996). 

In this paper, the microphysical timescales in clouds are studied in comparison with 

the time step for cloud-resolving modeling, providing theoretical evidence for the choice 

of prognostic thermodynamic variables. Of all the microphysical timescales that are 

analyzed in the paper, only the timescale of water vapor condensation (or cloud water 

evaporation) is smaller than 10 s, the order of a typical time step used in cloud-resolving 

modeling, indicating that cloud condensation (or evaporation) is not suitable for explicit 

simulation in cloud-resolving modeling. 

In current cloud-resolving models, the three variables (T, qv, qc) are used as prognostic 

variables to simulate non-precipitating warm clouds. Since all three variables involve the 

short timescale of water vapor condensation, it is suggested that they be replaced with 

moist entropy s, the total mixing ratio of airborne water qr and supersaturation. The 

supersaturation, rather than s and qt, involves the short timescale. Therefore, it is 

reasonable to assume zero supersaturation when cloud water exists, and consequently the 

three prognostic variables are decreased to two prognostic variables (i.e., s and qr). 

Two numerical models are used to simulate an air parcel in adiabatic upward motion. 

Their results are compared to show the benefit of using moist entropy as a prognostic 

variable. The first numerical model uses (T, qv, qc) as prognostic variables. When its time 

step is small (e.g., less than 1 s), its results are reasonable. When its time step is large 

(e.g., larger than 2 s), its results are overwhelmed with great computational errors, 

exhibiting the phenomena of spurious supersaturation and negative mixing ratio of cloud 
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water. The second model uses (s, q,) as prognostic variables. When its time step is 10 s 

(or even larger), its results still agree well with those of the first model using a very small 

time step (e.g., 0.1 s). The comparison of the two models shows clearly that (s, 4,) can 

work efficiently as prognostic variables in cloud-resolving modeling. 
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APPENDIX A 

List of Symbols 

AJA, : defined in (3.3)/(3.10) 

CJCpJcl : specific heat of dry aidwater vapor/liquid water 

D, : coefficient of water vapor diffusion in air 

e : partial pressure of water vapor 

Esw/Esi : saturation vapor pressure over watedice 

f=e/Esw : relative humidity 

fJ/fh : ventilation coefficient for water vapor diffusiodheat transport 

g : acceleration due to gravity 

K ,  : coefficient of air heat conductivity 

LJLJLf : latent heat of vaporization/sublimation/freezing 

Nc/N,./NJNp : concentration of cloud droplets/raindrops/cloud ice particles/precipitating 

ice particles 

p : total pressure of moist air 

preF10 pa : reference pressure 

qvsw/qvsi : saturation mixing ratio of water vapor over waterhce 

qJqc/si/q1/qs/4g : mixing ratio of water vapor/cloud watedcloud ice/rain/snow/graupel 

qt=qv+qc+qi : total mixing ratio of airborne water 

rc/rr/ri/rD : radius of cloud droplets/raindrops/cloud ice particles/precipitating ice particles 

RdR, : gas constant of dry aidwater vapor 

s : moist entropy per unit mass 

t : time 

5 
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T : temperature 

T0=273. 15 K : absolute temperature at the melting point 

Tref =273.15 K : reference temperature 

w : vertical velocity 

z : height 

z: timescale 

At : time step for integration 

p : air density 

pJpi : density of liquid watedice 
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Figure Captions 

Figure 1 The variable @ i n  the vertical axis varies with time when At=lO s and the 

timescale Tis 2, 5 and 12.5 s, respectively. The numerical and the analytical solutions are 

shown with thick and thin lines, respectively. 

Figure 2 The timescale of water vapor condensation varies with pressure (or 

temperature). The results with NJ,= 500 and 3000 p m ~ m - ~  are displayed with thin and 

thick lines, respectively. 

Figure 3 The timescale of water vapor deposition varies with pressure (or temperature). 

The results with Niri=10-3, lo-' and lo1 p~n-cm.~ are displayed with dashed, thin and thick 

lines, respectively. 

Figure 4 

fusion and snowflake fusion are displayed with thin and thick lines, respectively. 

The timescale of ice fusion varies with Nprp. The timescales for cloud ice 

Figure 5 

mixing ratio of airborne water. 

Schematic on the diagnosis of temperature from moist entropy and the total 

Figure 6 Change in output variables with height for two different models. The variables 

in a traditional model with At=O.1 s are displayed with thin solid lines; those in the 

traditional (or first) model with At=3 s are displayed with thin dashed lines; and those in 
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the present (or second) model with At=lO s are displayed with thick dashed lines. Thin 

solid lines coincide with thick dashed lines. 
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Figure 1 The variable $J in the vertical axis varies with time when At=10 s and the 

timescale Tis 2, 5 and 12.5 s, respectively. The numerical and the analytical solutions are 

shown with thick and thin lines, respectively. 
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Figure 2 The timescale of water vapor condensation varies with pressure (or 

temperature). The results with NJ,= 500 and 3000 ~ m - c m - ~  are displayed with thin and 

thick lines, respectively. 
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Figure 3 The timescale of water vapor deposition varies with pressure (or temperature). 

The results with Njrj=10-3, lo-' and 10' p~n-crn-~ are displayed with dashed, thin and thick 

lines, respectively. 
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Figure 4 

fusion and snowtlake fusion are displayed wit‘n thin and thick lines, ~cspectiiiely. 

The timescale of ice fusion varies with Nprp. The timescales for cloud ice 
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Figure 5 

mixing ratio of airborne water. 

Schematic on the diagnosis of temperature from moist entropy and the total 
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Figure 6 Change in output variables with height for two different models. The variables 

in a traditional model with At=O.l s are displayed with thin solid lines; those in the 

traditional (or first) model with At=3 s are displayed with thin dashed lines; and those in 

the present (or second) model with At=lO s are displayed with thick dashed lines. Thin 

solid lines coincide with thick dashed lines. 
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Popular Summary 

S p i ~ u s  c~qxtcitimcil p h e ~ o m e ~ a  (e.g., spx- icxs sqmsmmtim md neptive ~ i x i n  g 

ratio of cloud water) exist in current cloud-resolving modeling. They originate in the 

interaction between model dynamics and cloud microphysics. In this paper, theoretical 

analysis is given to show that the phenomena appear while the timescale of cloud 

condensation or evaporation is smaller than the time step used in cloud-resolving models. 

To remove the phenomena, it is suggested that moist entropy be used as a prognostic 

variable and temperature be diagnosed from that and other prognostic variables. Numerical 

tests show that the spurious computational phenomena, as expected, disappear when moist 

entropy is used as a prognostic variable. 


